there have been more than one. This information is therefore not identical to
that contained in table 5.14. Nonetheless, it pertains to the same basic behavior,
and it is useful to see whether it corroborates or conflicts with the behavior
seen in that table. The percentage responding yes to this question, by gender
and birth cohort, is reported in table 5.15. The same question was asked in the
1991 GSS survey in an SAQ format as well; in that sample of adults in the age
range eighteen to fifty-nine, 21.7 percent of the men and 13.4 percent of the
women responded yes.

5.4 Multivariate Analysis of the Number of Partners

We have seen that the most important social factors that distinguish adults in
terms of number of sex partners are marital status, gender, and age. To con-
clude this chapter, we present, briefly, a more sophisticated statistical analysis
of the factors that are correlated with the choice about the number of sex part-
ners over the past twelve months and over the adult lifetime. Here, we again
look at four categories of number of partners—no partners, one partner, two
to four partners, and five or more partners within the past twelve months and
no partners, one, two to ten, and eleven or more over the adult lifetime—and
we treat these categories as distinct, with each adult choosing to have a given
number of partners in each time frame. We look at the relations among the six
master status variables that were introduced in chapter 1 and that were used in
table 5.1 above. We also include a few more variables to see whether they have
any influence on the number of sex partners.

The nature of the statistical procedure is that it estimates the relations simul-
taneously for all the variables and for all four categories at once, taking account
of the separate and pairwise relations, and yielding an estimate of the influence
of each variable holding all the others constant at their average level in the data
set. It is called a multinomial logistic statistical model, and table 5.16 is derived
from its estimation. The rows in this table are deceptively simple, but they are
based on this rather complex estimation process over all the approximately
3,000 respondents. The rows here are estimates that control for all the other
variables in the table; the asterisks indicate that the accompanying value is
statistically different from that of the italicized row, which is the comparison
group.

In table 5.16A, for example, the top row shows that 12.3 percent of men are

<table>
<thead>
<tr>
<th>Cohort</th>
<th>Men</th>
<th>Women</th>
</tr>
</thead>
<tbody>
<tr>
<td>1933–42</td>
<td>37.0</td>
<td>12.4</td>
</tr>
<tr>
<td>1943–52</td>
<td>31.4</td>
<td>19.9</td>
</tr>
<tr>
<td>1953–62</td>
<td>20.5</td>
<td>14.5</td>
</tr>
<tr>
<td>1963–74</td>
<td>7.1</td>
<td>11.7</td>
</tr>
<tr>
<td>Total</td>
<td>24.5</td>
<td>15.0</td>
</tr>
</tbody>
</table>